Inside dynamics of pulled and pushed fronts

نویسندگان

  • Jimmy Garnier
  • Thomas Giletti
  • François Hamel
  • Lionel Roques
چکیده

We investigate the inside structure of one-dimensional reaction-diffusion traveling fronts. The reaction terms are of the monostable, bistable or ignition types. Assuming that the fronts are made of several components with identical diffusion and growth rates, we analyze the spreading properties of each component. In the monostable case, the fronts are classified as pulled or pushed ones, depending on the propagation speed. We prove that any localized component of a pulled front converges locally to 0 at large times in the moving frame of the front, while any component of a pushed front converges to a well determined positive proportion of the front in the moving frame. These results give a new and more complete interpretation of the pulled/pushed terminology which extends the previous definitions to the case of general transition waves. In particular, in the bistable and ignition cases, the fronts are proved to be pushed as they share the same inside structure as the pushed monostable critical fronts. Uniform convergence results and precise estimates of the left and right spreading speeds of the components of pulled and pushed fronts are also established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neutral Genetic Patterns for Expanding Populations with Nonoverlapping Generations.

We investigate the inside dynamics of solutions to integrodifference equations to understand the genetic consequences of a population with nonoverlapping generations undergoing range expansion. To obtain the inside dynamics, we decompose the solution into neutral genetic components. The inside dynamics are given by the spatiotemporal evolution of the neutral genetic components. We consider thin...

متن کامل

Breakdown of the standard perturbation theory and moving boundary approximation for pulled’’ fronts

The derivation of a Moving Boundary Approximation or of the response of a coherent structure like a front, vortex or pulse to external forces and noise, is generally valid under two conditions: the existence of a separation of time scales of the dynamics on the inner and outer scale and the existence and convergence of solvability type integrals. We point out that these conditions are not satis...

متن کامل

Front propagation into unstable states

This paper is an introductory review of the problem of front propagation into unstable states. Our presentation is centered around the concept of the asymptotic linear spreading velocity v∗, the asymptotic rate with which initially localized perturbations spread into an unstable state according to the linear dynamical equations obtained by linearizing the fully nonlinear equations about the uns...

متن کامل

Weakly pushed nature of "pulled" fronts with a cutoff.

The concept of pulled fronts with a cutoff epsilon has been introduced to model the effects of the discrete nature of the constituent particles on the asymptotic front speed in models with continuum variables (pulled fronts are the fronts that propagate into an unstable state, and have an asymptotic front speed equal to the linear spreading speed v* of small linear perturbations around the unst...

متن کامل

Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts

Fronts that start from a local perturbation and propagate into a linearly unstable state come in two classes: pulled fronts and pushed fronts. The term “pulled front” expresses that these fronts are “pulled along” by the spreading of linear perturbations about the unstable state. Accordingly, their asymptotic speed v∗ equals the spreading speed of perturbations whose dynamics is governed by the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011